Centro de masas
El centro de masas de un sistema discreto es el punto geométrico que dinámicamente se comporta como si estuviese sometido a la resultante de las fuerzas externas al sistema. De manera análoga. Normalmente se abrevia como CM.
En física, el centroide, el centro de gravedad y el centro de masas pueden, bajo ciertas circunstancias, coincidir entre sí. En estos casos se suele utilizar los términos de manera intercambiable, aunque designan conceptos diferentes. El centroide es un concepto puramente geométrico, mientras que los otros dos términos se relacionan con las propiedades físicas de un cuerpo. Para que el centroide coincida con el centro de masa, el objeto debe tener densidad uniforme, o la distribución de materia a través del objeto debe tener ciertas propiedades, tales como simetría. Para que un centroide coincida con el centro de gravedad, el centroide debe coincidir con el centro de masa y el objeto debe estar bajo la influencia de un campo gravitatorio uniforme.
En un tratamiento de sistemas de masas puntuales el centro de masas es el punto donde, para ciertos efectos, se supone concentrada toda la masa del sistema. El concepto se utiliza para análisis físicos en los que no es importante considerar la distribución de masa. Por ejemplo, en las órbitas de los planetas.
Cálculo del CM de un sistema
Distribución discreta de materia
Para un sistema de masas discreto, formado por un conjunto de masas puntuales, el centro de masas se puede calcular como:
, masa de la partícula i-ésima.
, vector de posición de la masa i-ésima respecto al sistema de referencia asumido.
Distribución cuasidiscreta de materia
En el caso de un sistema de cuerpos cuasipuntuales, o cuerpos que distan entre sí mucho más que las dimensiones de cada uno de los cuerpos, el cálculo anterior resulta bastante aproximado.

Distribución continua de materia
Para sistemas de masas continuos o distribuciones continuas de materia debemos recurrir al Cálculo Infinitesimal e Integral, de modo que la expresión anterior se escribe en la forma:
Distribución de masa homogénea: Si la masa está distribuida homogéneamente, la densidad será constante por lo que se puede sacar fuera de la integral haciendo uso de la relación

Nota: V es el volumen total. Para cuerpos bidimensionales o monodimensionales se trabajará con densidades superficiales/longitudinales y con superficies/longitudes.
- Para el caso de cuerpos con geometría regular tales como esferas, paralelepípedos, cilindros, etc. el CM coincidirá con el baricentro del cuerpo.
Distribución de masa no homogénea: Los centros de masas en cuerpos de densidad variable pueden calcularse si se conoce la función de densidad . En este caso se calcula el CM de la siguiente forma.

- La resolución de la integral dependerá de la función de la densidad.
EJEMPLOS:
EJEMPLO NUM 2

El centro de masas de un sistema discreto es el punto geométrico que dinámicamente se comporta como si estuviese sometido a la resultante de las fuerzas externas al sistema. De manera análoga. Normalmente se abrevia como CM.
En física, el centroide, el centro de gravedad y el centro de masas pueden, bajo ciertas circunstancias, coincidir entre sí. En estos casos se suele utilizar los términos de manera intercambiable, aunque designan conceptos diferentes. El centroide es un concepto puramente geométrico, mientras que los otros dos términos se relacionan con las propiedades físicas de un cuerpo. Para que el centroide coincida con el centro de masa, el objeto debe tener densidad uniforme, o la distribución de materia a través del objeto debe tener ciertas propiedades, tales como simetría. Para que un centroide coincida con el centro de gravedad, el centroide debe coincidir con el centro de masa y el objeto debe estar bajo la influencia de un campo gravitatorio uniforme.
En un tratamiento de sistemas de masas puntuales el centro de masas es el punto donde, para ciertos efectos, se supone concentrada toda la masa del sistema. El concepto se utiliza para análisis físicos en los que no es importante considerar la distribución de masa. Por ejemplo, en las órbitas de los planetas.
Cálculo del CM de un sistema
Distribución discreta de materia
Para un sistema de masas discreto, formado por un conjunto de masas puntuales, el centro de masas se puede calcular como:
Distribución cuasidiscreta de materia
En el caso de un sistema de cuerpos cuasipuntuales, o cuerpos que distan entre sí mucho más que las dimensiones de cada uno de los cuerpos, el cálculo anterior resulta bastante aproximado.
Distribución continua de materia
Para sistemas de masas continuos o distribuciones continuas de materia debemos recurrir al Cálculo Infinitesimal e Integral, de modo que la expresión anterior se escribe en la forma:
Distribución de masa homogénea: Si la masa está distribuida homogéneamente, la densidad será constante por lo que se puede sacar fuera de la integral haciendo uso de la relación
Nota: V es el volumen total. Para cuerpos bidimensionales o monodimensionales se trabajará con densidades superficiales/longitudinales y con superficies/longitudes.
- Para el caso de cuerpos con geometría regular tales como esferas, paralelepípedos, cilindros, etc. el CM coincidirá con el baricentro del cuerpo.
Distribución de masa no homogénea: Los centros de masas en cuerpos de densidad variable pueden calcularse si se conoce la función de densidad . En este caso se calcula el CM de la siguiente forma.
- La resolución de la integral dependerá de la función de la densidad.
EJEMPLOS:
EJEMPLO NUM 2
EJEMPLO NUM 3
CENTROIDES
En geometría, el centroide o baricentro de un objeto X perteneciente a un espacio n-dimensional es la intersección de todos los hiperplanos que dividen a X en dos partes de igual n-volumen con respecto al hiperplano. Informalmente, es el promedio de todos los puntos de X.
Momento de Inercia
El momento de inercia o inercia rotacional es una medida de la inercia rotacional de un cuerpo. Más concretamente el momento de inercia es una magnitud escalar que refleja la distribución de masas de un cuerpo o un sistema de partículas en rotación, respecto al eje de giro. El momento de inercia sólo depende de la geometría del cuerpo y de la posición del eje de giro; pero no depende de las fuerzas que intervienen en el movimiento.
Un área compuesta A que está constituida por varias áreas componentes A1, A2, A3... Como la integral que representa el momento de inercia de A puede subdividirse en integrales evaluadas sobre A1, A2, A3..., el momento de inercia de A con respecto a un eje dado se obtiene sumando los momentos de áreas A1, A2, A3... con respecto al mismo eje.
EJEMPLOS:
EJEMPLO NUM 2

Esta muy bueno este Blog, Soy estudiante de Ing. Civil de la UNEFA Venezuela y buscaba esta informacion Gracias, espero que continue publicando mas sobre estatica y dinamica.
ResponderEliminarAtt. Octavio Cesar Galvis
gracias buena info! soy estudiante de ing.civil de la UJCM de Perú!
ResponderEliminarBuena info, la ocupaba de volada, ya que olvide mi libro de Estatica y nada mas tenia el de mecanica de materiales.
ResponderEliminarEstudiante de Ingenieria Civil UAS México
soy de UNAM México y estudio ingeniería civil gracias
ResponderEliminarBuena información, soy estudiante de Ing Civil de la UDEM.
ResponderEliminarexelente informacion .... soy estudiante de ing Civil de la UNSA-Peru.!
EliminarMuy buena informacion, se agradece :)
ResponderEliminarExcelente información, soy estudiante de Ing. Química del ITA
ResponderEliminarGracias! c:
Buena Información, Soy Estudiante De Arquitectura.
ResponderEliminarEspectacular! Soy estudiante de ingeniería civil mecánica. Saludos y gracias por este aporte :D
ResponderEliminarExcelente información, Soy estudiante en Ingenieria Civil en la ESIA Instituto Politécnico Nacional.
ResponderEliminarBuena info gracias
ResponderEliminarSoy estudiante de ing. electromecanica en mexico.
saludos.
Este comentario ha sido eliminado por el autor.
ResponderEliminarExcelente información, soy estudiante de Ing. Mecatrónica en el ITC en México.
ResponderEliminarSaludos.
Buen aporte amigo!
ResponderEliminarExelente aporte! Gracias
ResponderEliminarSoy de Voca 3 de Mexico del Poli... Gracias por la info
ResponderEliminarBuena informacion, soy estudiante de Ing. Electromecánica. Saludos!
ResponderEliminar